close
Blogtrottr
Yahoo!奇摩知識+ - 分類問答 - 科學常識 - 已解決
Yahoo!奇摩知識+ - 分類問答 - 科學常識 - 已解決 
Build - Release - Deploy

Automate your build process. Integrates with 50+ Dev tools.
From our sponsors
一個規律數列是否碰整數數學問題
Aug 21st 2013, 05:22

如果你要計算的方法,看看這個可否幫倒你。

分子是 : 3^2+1, 4^2+1, 5^2+1, ... , (n+2)^2+1
分母是 : 2*1+1, 2*2+1, 2*3+1, ... , 2n+1

所以通項是 [(n+2)^2 + 1]/(2n + 1), 若它是一整數 p, 則
(n+2)^2 + 1 = 2np + p
==> n^2 + 2(2-p)n + (5-p) = 0
==> n = (p-2) + 根[(2-p)^2 - (5-p)]
因為 n 為一自然數,所以
(2-p)^2 - (5-p) = r^2 . . . (r 也是一自然數)
==> p^2 - 3p - 1 = r^2
==> 4p^2 - 12p - 4 = 4r^2
==> (2p - 3)^2 - 13 = (2r)^2
==> (2p - 3)^2 - (2r)^2 = 13
==> (2p - 3 - 2r)(2pm - 3 + 2r) = 1*13
所以
2p - 3 - 2r = 1 . . . (1) 及 
2p - 3 + 2r = 13 . . (2)

解 (1), (2), 得 p = 5, r = 3
p = 5 即 n = (5-2) + 根[(2-5)^2 - (5-5)] = 6
所以第六項是為一的整數項,項值是 5.

This entry passed through the Full-Text RSS service — if this is your content and you're reading it on someone else's site, please read the FAQ at fivefilters.org/content-only/faq.php#publishers. Five Filters recommends: 'You Say What You Like, Because They Like What You Say' - http://www.medialens.org/index.php/alerts/alert-archive/alerts-2013/731-you-say-what-you-like-because-they-like-what-you-say.html

You are receiving this email because you subscribed to this feed at blogtrottr.com.

If you no longer wish to receive these emails, you can unsubscribe from this feed, or manage all your subscriptions
arrow
arrow
    全站熱搜
    創作者介紹
    創作者 qfasff 的頭像
    qfasff

    線上遊戲排行榜2013/2014,進擊的巨人線上看,candy crush saga外掛,正妹寫真三圍

    qfasff 發表在 痞客邦 留言(0) 人氣()